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U N S T E A D Y  R A D I A T I V E - C O N D U C T I V E  HEAT T R A N S F E R  

IN A S E M I T R A N S P A R E N T  SELECTIVELY A B S O R B I N G  L A Y E R  

A.  L. B u r k a  a n d  N .  A.  R u b t s o v  UDC 536.244 

Results of a numerical solution of the boundary-value problem of radiative-conductive heat 
transfer in a fiat layer of a selectively absorbing and 'radiating medium are presented. The 
effect of the optical properties of the medium and the walls, the temperature of the source of 
radiation, and the relationship between the absorption spectra of the medium and the source of 
radiation on temperature distribution is studied. 

Tile extensive use of semitransparent materials selectively absorbing thermal radiation in various fields 
of science and technology is associated with the high requirements of their production technology. Much 
attention is paid to calculations of unsteady radiativ~eonductive heat transfer (RCHT) in semitransparent 
media because of the necessity of mathematical modeling of the processes of complex heat transfer in these 
media at high temperatures. In this aspect, typical processes are the heating of glass billets in technologies 
of their melting, casting, and moulding. 

A series of papers [1-51 is devoted to development of calculation methods for studying unsteady RCHT 
in semitransparent media. Primary attention there is paid to studying the effect of the optical properties of 
semitransparent materials on the formation of the temperature field. It should be noted that, apart from the 
optical properties of a semitransparent material, a significant effect on heat transfer at high temperatures 
is exerted by the selective character of the source of radiation used for heating. This problem is studied in 
few papers. Chel'tsova and Shakhmatova [6] considered the model of a complex source whose radiation is 
characterized by different temperatures and spectral emissivities. By averaging the balance equation over 
the layer thickness, the problem of determination of tile temperature profile was reduced to the solution 
of a system of time-dependent nonlinear ordinary differential equations for the mean temperature of each 
sublayer into which the main semitransparent layer was divided. Kantorovich [7] studied RCHT in a layer 
of a selectively absorbing and radiating medium with account of the spectral character of the radiation flux 
incident onto the edge of the layer. 

In the present work, we study the process of radiative heating of a layer of a semitransparent selectively 
absorbing and radiating medium as applied to heating of an LK-7 window-glass plate. In contrast to [6] 
where the boundary-value problem for the balance equation was solved in the approximation of temperature 
averaging over the layer, the unsteady boundary-value problem for the heat-conduction equation is solved 
here in a rigorous statement. 

The mathematical formulation and the method for solving the system of energy-balance and radiation- 
transport equations are given. The energy equation and the boundary conditions have the following form: 

OT 02T OE 
p c - ~  = A Ox 2 Ox' 0 < x < L, t > 0; (1) 
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OT / 
A ~ x  = c~I(T - T1) - ~I~[Qt~(T~) - EI . (T) ]  dr, x = 0; 

+ r E2~(T)] dr, x L; A ~xx = a2 (T2 - T) - = 

fi2 

T(~, O) = To(x). 

The  equations of radiation-energy transport  with boundary conditions are wri t ten  as 

~ + ~z$+~ = ~ I . ~ ( T ) ,  0 < ~ < L; 

(2) 

(3) 

(4) 

(~) 

dI7 - a ~ v I ~ .  = t e v l p ~ ( T ) ,  it-'~-x 0 < x < L; (6) 

U ( 0 , i t )  = (i - R. . )Z . . (T?)  + R,~ZE(0, i t ) ;  (7) 

z~+(L, it),f o <<., < itr, 1 

I~- (L, #) = (I-R2v)Ip~,(T~)+2R2,, i+(L, tt)#d#, # r ~ < # ~ < l "  (8) 

ttF 

OE 
/ te~,[4Ip~,(T) - Gv(x)] dr, G~,(x) = 27cn2hu3 Ei.(T*) = IR~,(T~), 0:r 

Here Ipv(T) = ~[exp(hv/(kT))  - 1 ] '  = 
1 0 

27r/[I+(x, it) + I~(x,#)]dit,  it = Icos~[, itr = V/1 - 1/n 2, itr = co s~ r ,  ~ r  is the angle of to ta l  inter- 
J 

0 
nal reflection, ~ is the angle between the ray and the positive direction of the x axis, ~e~ is the volumetric 
absorptivity of the material  for the frequency v, n is the refractive index, c is the heat capacity, p is the  density 
of the medium, A is the thermal conductivity, L is tile layer thickness, T/ and T/* are the tempera tures  of 
the ambient medium and external radiators, [~  are the spectral intensities of radiation in the positive and 
negative directions of  the x axis, Ip~, is the Planck function, Qw, Ew, r Riv, and Q~ are the densities of 
the incident fluxes, intrinsic radiation, emissivity, reflectivity, and spectral regions of opacity of the boundary  
surfaces, respectively, and ai are the coefficients of convective treat transfer from the plate at the boundaries 

( i  = i, 2). 
From the energy and radiation-transport  equations with the corresponding boundary conditions, it 

follows that the t empera tu re  distribution in the glass layer is determined to a large extent not only by the 
selective character of the external source of radiation but also by the optical properties of the surfaces of the 
semitransparent layer. In particular, condition (8) indicated that  refraction and complete internal reflection 
of radiation are observed in the region of semitransparency of the material at the boundary x = L. It  follows 
from (7) that the boundary  x = 0 diffusely transmits and reflects selective radiation. Assuming u l  = 0, 
&2 = 0, ~t- = 0, and Q2.(T~) = [m,(T~) in Eqs. (2) and (3) and Rt~ = 1 in (7), the boundary conditions for 

the temperature  and intensity are written as [6] 

OT 
A -~z = O, x = 0; (9) 

A ~ x  = ~2~[Ipv(2r~) - Ipv(T)] dr, 
ft2 

x = L ;  (I0) 
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z~ +(x ,  ~) = I i ( ~ ,  ~) ,  �9 = o, (ii) 



where r = 1/(1/Ss,u + 1/zgu) and Cs,v and r are the emissivities of the external source of radiation and 
glass in the opacity region. 

Using the Green fimction, boundary-value problem (1)-(4) with account of (9)-(11) reduces to the 
nonlinear integral equation in the dimensionless temperature 

1 

o(L t) = q(O)r(L 1) + / F(O, z, t)r(L z) dz, (12) 
where o 

L f cpL 2 00 
q(O) = J z2 [Ip (o) - (E = 1); F(O. E. t) - an(j_)i + - - A  

oo 

OR(E) = L/~e~[4Ip~(O) -G(E)]d~,, E = x/L, 0(E,t) = T(E,t)/T~. 
. 1  

o 

The Green function has the form 

F(E, z) = ~ -coshE cosh (1 - z) /s inh 1, 

t -cosh  (1 - E) cosh z/s inh 1, 

E~<z, 

E>~z. 

The divergence of the radiation flux dE/d E is expressed in terms of radiation intensities I + and I~-, 
which are determined from the solution of boundary-value problem (5)-(8) for the transport equation with 
account of (11) and have the form 

{,:(o,.) § ex. (- (,,) 
o 

! 

,, { .~. / [ ~  T. (i-E)] (14) (x-,)],.}o.p[-; 
where ~-~ = ~e~L. Explicit relations for the boundary intensities are obtained by solving a system of two 
algebraic equations in I+(0, #) and I 7 (1, it) using relations (8), (11). (13), and (14). Substituting the values 
of I+(0, #) and I7(1,  #) into (13) and (14), we obtain the final relations for the intensities entering into tile 
radiation-flu.x divergence dE/d~. 

Thus, the RCHT problem (1)-(8) in a flat layer of a selectively absorbing and radiating medium reduces 
to the solution of the nonlinear integral equation (12) relative to temperature by the Newton-Kantorovich 
iteration method [8]. The integrals in (12)-(14) were calculated by Gauss' quadrature fornmlas with 20 
nodes, and the derivative O0/Ot was approximated by a finite-difference relation. The temperature profile 
was calculated for each moment of tinm. 

Numerical calculations with account of the selective character of radiation were conducted for an LK-7 
glass with the optical and thermophysical characteristics A = 1.42 W / ( m .  K), c = 1.17.103 J / (kg-  K), 
p = 2.44- 103 kg/m 3, n = 1.5, and L = 0.01 m [6]. According to [6], the absorption spectrum of glass is 
characterized by four bands located in the following wavelength ranges A [tim]: (0, 1.3), (1.3, 2.5), (2.5, 5), 
and (5, c~). The values of the absorption factors eeA [m -z] for these wavelength ranges are 0.2, 10, 320, and 
e~. In the region of opacity (5, c~), the emissivity of glass is Cg = 1. 

In accordance with the identified characteristic absorption bands of glass, the enfissivity of the source 
~s,A is divided into four steps of unit  or zero height (1, 0). Thus, for z(0,1.3) = 1, ~(1.3,2.5) = 1, ~(2.5,5) = 0, 
and r = 0 for the source temperature  Ts = 3000 K, we assume that  Us, A = (1, 1, 0, 0). 

Results of numerical simulation of the process of heating of a glass plate by radiation are presented 
below. Figure l a  shows the temperature  on the plate surface (x = 0), which is not irradiated from outside 
(or which is thermally insulated), versus time for the temperature of the source of radiation Ts = 3000, 2100, 
and 1500 K and different distributions of emissivity ~s,A over the radiation absorption bands in glass. The 
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Fig. 1. Temperature  of a thermally insulated surface (x = 0) versus t ime for opacity regions 5 pm ~< A < 
oc (a) and 0 ~< )~ < oo (b): for region I (Ts = 3000 K), curves 1, 2, and 3 refer to Xs,), = (1, 1,0,0), 
(1, 0, 0, 0), and (0, 1, 0, 0), respectively, for region II (Ts = 2100 K), curves 1, 2, and 3 refer to 
Xs,), = (0, 1, 1,0), (0, 1, 0, 0), and (0, 0, 1, 0), respectively, and for region III  (Ts = 1500 K), curves 1, 
2, and 3 refer to r = (0, 0, 1, 1), (0, 0, 1, 0), and (0, 0, 0, 1), respectively. 
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Fig. 2. Temperature on the plate surface x = L versus time for 0 ~< A ~< 5 #m (dashed curves) and 
5 #m <~ A < oo (solid curves): curves 1 refer to Ts --- 3000 K and ~s,A = (1, 1,0,0), 2 to Ts = 2100 K and 
Xs,A = (0, 1, 1,0), and 3 to Ts = 1500 K and Xs,A = (0,0, 1, 1). 

Fig. 3. Distribution of the temperature  O over the thickness of a plate (0 ~< { ~< 1) irradiated by a source 
with Ts = 3000 K and Ss,A = (1, 1, 1, 1) for 5 #m ~< A < oc (dashed curves) and 0 ~< A < c~ (solid curves); 
curves 1, 2, 3, and 4 refer to t = 0.33, 0.22, 0.11, and 0.01 h, respectively. 

shift  of  the  m a x i m u m  value of emiss iv i ty  ~s,A = 1 to the  region of  sho r t  wavelengths  significantly increases the 

t e m p e r a t u r e ,  increases  the  ra te  of  t e m p e r a t u r e  var ia t ion,  and  reduces  the  t ime  needed for the  hea ted  sys tem 

to reach  a s t e a d y  reg ime in the case Ts = 3000 K as compa red  to  t he  case of  a m o d e r a t e  t e m p e r a t u r e  of  the 
source  of  r ad i a t i on  Ts = 1500 K. W e  t o o k  into account  the  divis ion of  the overall  range  of the absorp t ion  

factor  a~A in to  four  character is t ic  b a n d s  including the  opac i ty  region (5, oo). T h e  presence of this region 
in the  a b s o r p t i o n  s p e c t r u m  of glass ind ica tes  t h a t  the  rad ia t ion  is comple te ly  abso rbed  by the surface layer 

x -- L wi th in  the  wavelength  r ange  f rom 5 / ~ m  to  infinity, and  t h e n  it is t r ans fe r red  by means  of R C H T  to 

the  deep  layers  to the  surface x -- 0. 
F igu re  l b  shows the t e m p e r a t u r e  dependences  of  a t h e r m a l l y  insula ted  p la te  surface on t ime, which 

refer  to a h y p o t h e t i c a l  case of ex is tence  of  a highly hea t - conduc t ing  opaque  sublayer  wi th  the  surface-opaci ty  
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Fig. 4. Distribution of the temperature 0 over the plate thickness (0 ~< ~ ~< 1) for t = 1.11 (a) and 5.55 (b) h; 
for region I (Ts = 3000 K), curves 1 refer to ~s,A = (1, 1,0,0), 2 to ~s,A = (1,0,0,0), and 3 to Ss,A = (0, 1,0,0); 
for region 1I (Ts = 1500 K), curves 1 refer to ~s,A = (0, 0, 1, 1), 2 to ~s,A = (0, 0, 1, 0), and 3 to es, A = (0, 0, 0, 1). 

region 0 <~ A < oc on the irradiated surface of the glass plate (x = L). A comparison of Fig. l a  and b shows 

tha t  tile glass tempera ture  and heating rate increase significantly in this case. The assumption of opaci ty  

of the irradiated surface is used in calculations whose results are plot ted in Fig. 2 as the t empera tu re  of 
tim irradiated surface of tile glass plate versus t ime. Two opacity regions of  the  irradiated glass surface are 

considered: 5 #m ~ A < oo (solid curves) and 0 ~< ), ~< 5 #m (dashed curves). Obviously, the second case is 
only hypothetical.  It  follows from Fig. 2 that  tile presence of an opacity region within the wavelength range 
from 0 to 5 Izm on the irradiated surface of the pla te  leads to significant intensification of the process of 

heating of the glass plate as compared to heating of glass with an opacity region within the range from 5 # m  

to oo. 
The  calculation results for dimensionless t empera tu re  fields on the pla te  are plotted in Figs. 3 and 4. 

Figure 3 shows the kinetics of plate heating at initial t imes by a source of radiat ion with Ts = 3000 K and 

Cs,A = (1, 1, 1, 1). The processes of unsteady R C H T  in a glass plate with an opacity region 5 #m <~ A < oo 
under conditions of weak nonisothermality are proceeding slowly. The  presence of a heating black surface 

x = L of the gbass layer considerably intensifies the heating process. Clearly expressed nonisothermali ty over 

the layer thickness is observed, which can favor the formation of convective flows in the glass melt. 
Figure 4 shows the distributions of the dimensionless temperature  over ~ in the plate with an opaque 

irradiated surface x = L (with an opacity region 0 ~< A < oo) at the t imes t = 1.11 h and t = 5.55 h when 
the system reaches a regime close to the steady state.  The  temperature  distr ibutions have a quasi-isothermal 

character and differ weakly for all kinds of radiat ion sources and their spectral  emissivities Zs,),. An exception 

is the case of a source of radiation with Ts = 1500 K and Cs,A = (0, 0, 0, 1) coinciding with the fourth 
absorption band from 5 # m  to infinity for which the absorption factor in glass is infinitely great. In this case, 
obviously, the pertinent factor in ttm process of thermal-energy transfer is the thermal  conductivity. The  

process of reaching a steady temperature  regime is ra ther  extended in time. The  quasi-isothermal character  
of t empera ture  distribution is determined by the condition of the problem related to thermal insulation of 

the nonirradiated surface of the plate (x = 0). 
The  character of distribution of the dimensionless temperature  over the plate thickness at some inter- 

mediate t ime t depends significantly on the t empe ra tu r e  of the source of radia t ion and on the distr ibution of 

spectral  emissivities Cs,~ over the absorption bands.  The  dega-ee of influence of the latter is determined by the 

character of displacement of radiation maxima along the wavelength scale in accordance with Wien 's  law. 
The present s tudy of unsteady radiat ive-conductive heat transfer in a glass plate heated by a model  

source of radiation indicates that the processes of thermal-energy transfer in glass are rather complex and 
depend on the optical properties of radiation sources, glass material, and plate  boundaries. The  results 

obtained can be used to improve the technology of heating glasses and melts.  
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